Baidu Meizu Deep Learning Competition: Arithmetic Operation Recognition Using End-to-End Learning OCR Technologies
نویسندگان
چکیده
منابع مشابه
DAWNBench: An End-to-End Deep Learning Benchmark and Competition
Despite considerable research on systems, algorithms and hardware to speed up deep learning workloads, there is no standard means of evaluating end-to-end deep learning performance. Existing benchmarks measure proxy metrics, such as time to process one minibatch of data, that do not indicate whether the system as a whole will produce a high-quality result. In this work, we introduce DAWNBench, ...
متن کاملEnd-to-End Deep Learning for Driver Distraction Recognition
In this paper, an end-to-end deep learning solution for driver distraction recognition is presented. In the proposed framework, the features from pre-trained convolutional neural networks VGG-19 are extracted. Despite the variation in illumination conditions, camera position, driver’s ethnicity, and genders in our dataset, our best fine-tuned model, VGG-19 has achieved the highest test accuracy...
متن کاملDeep Language: a comprehensive deep learning approach to end-to-end language recognition
This work explores the use of various Deep Neural Network (DNN) architectures for an end-to-end language identification (LID) task. The approach has been proven to significantly improve the state-of-art in many domains include speech recognition, computer vision and genomics. As an end-to-end system, deep learning removes the burden of hand crafting the feature extraction is conventional approa...
متن کاملTowards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning
This paper presents an end-to-end framework for task-oriented dialog systems using a variant of Deep Recurrent QNetworks (DRQN). The model is able to interface with a relational database and jointly learn policies for both language understanding and dialog strategy. Moreover, we propose a hybrid algorithm that combines the strength of reinforcement learning and supervised learning to achieve fa...
متن کاملTVM: End-to-End Optimization Stack for Deep Learning
Scalable frameworks, such as TensorFlow, MXNet, Caffe, and PyTorch drive the current popularity and utility of deep learning. However, these frameworks are optimized for a narrow range of server-class GPUs and deploying workloads to other platforms such as mobile phones, embedded devices, and specialized accelerators (e.g., FPGAs, ASICs) requires laborious manual effort. We propose TVM, an end-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2876035